
Neural Machine Translation with Memory Network Based Attention

Étienne Simon∗

ENS Paris-Saclay
61 Avenue du Président Wilson,

94230 Cachan
esimon@esimon.eu

Holger Schwenk
Facebook AI Research
75002 Paris, FRANCE
schwenk@fb.com

Abstract

We investigate whether memory networks
can be used to improve the attention model
of a neural MT system. We will show that
using multiple hops on the source sentence
yield improvements of up to 1.4 BLEU on
the IWSLT De/En task. We then integrate
a second memory of all preceding target
words. This brings an additional 0.4 gain
in the BLEU score. Finally, we completely
remove the decoder LSTM and show that
a memory network can jointly handle the
attention mechanism and the generation of
the target sentence.

1 Introduction

The main idea of neural machine translation
(NMT) is to first encode the source sentence into a
higher-level representation, and then to create the
output sequence with a decoder (Kalchbrenner and
Blunsom, 2013; Cho et al., 2014; Sutskever et al.,
2014). Usually, both the encoder and decoder are
RNNs. These basic sequence-to-sequence mod-
els have achieved good results (Sutskever et al.,
2014), but the performances tends to decrease with
the sentence length. The current state-of-the-art in
NMT is to use an attention mechanism (Bahdanau
et al., 2015). Before generating the next word, the
decoder uses a soft alignment to decide on which
part of the source sentence to focus on. By these
means, longer sentences can be easily handled.

In this paper, we investigate whether memory
networks can be used in neural machine transla-
tion. A memory network with one hop performs
an operation which is quite similar to the attention
mechanism proposed in Luong et al. (2015). We
will show that using multiple hops on the source

∗This work was performed while É. Simon performed an
internship at Facebook AI Research, summer 2016

sentence yield improvements of up to 1.4 BLEU.
We then integrate a second memory of all preced-
ing target words. This brings an additional 0.4
gain in the BLEU score. Finally, we show that
a memory network can jointly handle the attention
mechanism and the generation of the target sen-
tence.

2 Architecture

Let us use the following notation to fix ideas:

• xj : source sequence, j = 1..n

• henc
j : hidden states of the encoder

• yi: target sequence (output of the decoder),
i = 1..m

• hdec
i : hidden states of the decoder

• ci: context vector at step i

The context vector is a weighted sum of all the
hidden states of the encoder:

ci =
∑
j

αijh
enc
j (1)

with αij =
exp(eij)∑
k exp(eik)

(2)

and eij = f
(
yi−1, h

dec
i−1 , h

enc
j

)
(3)

The energies eij are proportional to the impor-
tance of the source word xj in the generation of the
target word yi. In the original paper (Bahdanau et
al., 2015), the encoder is a bidirectional GRU, the
decoder an GRU and f is an MLP.

Different variants of the attention model have
been explored in (Luong et al., 2015), in particular
using the dot product between hdec

i−1 and henc
j to

compute eij . This approach has a nice analogy
with end-to-end memory networks (Sukhbaatar et
al., 2015). Given key and value memories k and



qi

oi

[hdec
i−1; yi−1]

hdec
i

yi

hdec
i−1

yi−1y1y0 · · ·

weighted sum

inner product

henc
0 henc

1
. . . henc

n

x0 x1 . . . xn

henc

softmax

ValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValueValue

KeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKey

Figure 1: Neural MT system. When a dot prod-
uct is used to calculate the weights eij then the
attention mechanism performs an operation very
similar to a memory network.

v and a query q, a memory network compute its
output u as follow:

p = softmax(qT · k) (4)

o =
∑
j

pjvj (5)

u = o+ q (6)

The similarity with the attention mechanism is di-
rect: the memories are composed of the hidden
states of the encoder k = v = henc and the query
q is hdec

i−1 . The sole notable difference being that
when computing an attention the query is not usu-
ally summed with the output, so u = o. This rela-
tionship is depicted in Figure 1.

In this paper, we extend the standard attention
mechanism in NMT in three ways:

1. Use a memory network with multiple hops on
the source to calculate the attention vector.
That is, we stack several memory networks
on top of each other by setting qk = uk−1 at
layer k as illustrated by Figure 2b. By these
means we hope to achieve better, incremen-
tally refined alignments;

2. Perform hops on the source and the preceding
target words. That is, we use a memory net-
work where the memories are filled with em-
beddings of the preceding words of the gener-
ated sentence. Including a memory on the tar-
gets could help to selectively focus on some
past words.

3. Replace the decoder LSTM with a memory
network which simultaneously performs the
attention and sentence generation. In this
case the output of the memory network is di-
rectly used to generate the target word yi =
softmax(Wu).

3 Experimental results

We have used the IWSLT 2014 task (Cettolo et al.,
2012) to perform all our experiments, translating
from German into English. We have chosen this
task since the translation of German is challeng-
ing for the attention model (the word order may
differ a lot from the English one, frequent long
distance dependencies, etc). The limited amount
of resources makes it also difficult to learn a good
attention model. The training corpus consists of
about 170k sentence (3.2M English words). 7k
sentences (roughly 120k words) were randomly
extracted for development and test respectively.

q

o

henc

[hdec
i−1; yi−1]

hdec
i

yi

hdec
i−1

yi−1y1y0 · · ·

(a) Standard attention (with dot-product)

q

o

q

o

henc

henc

[hdec
i−1; yi−1]

hdec
i

yi

hdec
i−1

yi−1y1y0 · · ·

(b) Extension to multiple hops on the
source sentence

q

o

q

o

Source hops

Target hops

henc

y<i

[hdec
i−1; yi−1]

hdec
i

yi

hdec
i−1

yi−1y1y0 · · ·

(c) Hops on the target and source sen-
tence.

Figure 2: Different attention mechanisms used in our NMT system.



S1 S2 S3 S4 S5 S6 S7
T0 23.0 23.5 23.9 24.1 24.4 24.1 23.9
T1 22.0 23.9 24.0 24.2 24.8 24.1 23.9
T2 21.8 23.8 24.0 24.2 24.3 23.8 23.7
T3 21.5 23.5 23.8 23.8 23.9 23.9 23.6
T4 21.9 23.5 24.1 24.0 24.3 23.8 23.6
T5 21.4 22.5 23.9 23.7 24.2 23.7 23.2

Table 1: BLEU scores on the test set in function of
the number of hops on the source and target sen-
tence. Best results are obtained with one hop on
the target (T1) and five hops on the source sen-
tence (S5). The standard attention model achieves
a BLEU score of 23.0 (entry T0S1).

We used a BLSTM for the encoder and an
LSTM for the decoder, both with one layer only.
We performed a grid search to find the best set-
ting of the hyper-parameters: the dimension of the
word embeddings and the LSTM hidden states are
set to 256. We trained our networks using standard
SGD with a batch size of 50, a learning rate of 0.1
and slow decay: at the end of each epoch, if the
BLEU score did not improved on the validation
set, we scale down the learning rate by 0.6. These
settings are identical for all our experiments.

We trained our memory networks in a simi-
lar way to their application to language modeling
(Sukhbaatar et al., 2015). First of all, the param-
eters of different hops are shared, so for all hops
i we have vi = v0 and ki = k0. Furthermore,
we use temporal encoding in the decoder memory
network, namely, each word is embedded along-
side its relative position to the current decoding
position. Since word order is already encoded by
the BLSTM, we do not use temporal encoding in
the encoder memory network. When performing
a single hop, we do not sum the query with the
memory output as this has shown to worsen per-
formance, so u = o. On the other hand, as soon
as the decoder performs 2 hops, it becomes neces-
sary to use this additional connection with a ReLU
activation function, so u = o + ReLU(q). When
attending the source sentence, the memories are
filled with the same vectors: kj = vj = henc

j . On
the other hand, we observed that using the same
memory vector to predict the alignment matrix and
the context vector performed poorly on the target
sentence. Therefore, target words yi are embed-
ded twice: once for the key memory ki and once
for the value memory vi.

We train each model 5 times with different ran-
dom initializations and report the score on the test
set of the one with smallest validation cost. First
of all, we observed that models which attend the
source sentence before attending the target sen-
tence performed poorly. Furthermore, alternat-
ing between source and target hops did not bring
any improvement. Therefore, we report results on
model performing target hops followed by source
hops (see Table 1). It can be clearly seen that per-
forming multiple hops on the source sentence im-
proves the BLEU score by as much as 1.4 points
with 5 hops. Furthermore, introducing a single
hop on the target sentence gives best results with a
BLEU score of 24.8.

Figure 3 shows the alignment matrices of a
model with five hops on the source sentence, that
is the output of the softmax at each memory hop.
A similar pattern is observed for most sentences:
the model begins to predict a fuzzy alignment
which is then refined by subsequent hops. This is
further confirmed by truncating the memory net-

Figure 3: Example of the consecutive alignment
matrices when using five hops on the source sen-
tence. At the first hop (top left), the attention only
considers the first source word. Hop after hop (left
to right, top to bottom), the final alignment is de-
veloped. One can clearly see that the alignment of
the English words “gave me” needs all the hops
to find the relation with the German words “hat ...
mir ... gegeben”.



Figure 4: Example of the consecutive alignment
matrices when using first one hop on the target
sentence (top left) and then five hops on the source
sentence (left to right, top to bottom). The target
alignments a very sharp and concentrate on one
word only at each step. The memory net first looks
at the preceding target word and then anchors on
the same target word in the past while generating
several new words. In comparison to Figure 3, the
source alignments are quite precise from the first
hops and need less refinement.

work: when we train a model with 5 source hops
and then test it with only 3 source hops, we ob-
serve that the theme of the translated sentences is
somewhat preserved while the exact meaning is
lost. The consecutive alignments matrices of our
best performing model are shown in Figure 4.

In the past, memory networks had been suc-
cessfully applied to language modeling (LM)
(Sukhbaatar et al., 2015). The decoder LSTM of
an NMT system is basically an LM which is condi-
tioned on the source sentence. In our best configu-
ration (1 target and 5 source hops), all the preced-
ing target words are already in memory. In other
words, our memory network has already all the
necessary information to generate the next word
and one may wonder whether the LSTM in the de-

coder is still necessary. To verify this, we com-
pletely removed the decoder LSTM. The output of
the memory network is directly fed to a softmax
output layer to generate the next word. In this case,
more hops on the target sentence are needed (as it
was observed in language modeling with memory
networks). We were able to achieve a BLEU score
of 22.9 using 3 hops on the target and 7 hops on
the source. This is not as good as our best con-
figuration with an LSTM (BLEU of 24.8), but it
matches the baseline NMT system with a standard
attention mechanism (BLEU of 23.0). To the best
of our knowledge, this is the first time that mem-
ory networks are used to generate sequences, con-
ditioned on an input.

4 Related work

Luong et al. (2015) proposed different variants of
the original attention model. As mentionned be-
fore, their use of the dot-product makes their ap-
proach very close to a memory network with a
single hop. Several works address the problem of
coverage, i.e. how to guarantee that all the source
words are considered for translation and that no
word is translated multiple times (Tu et al., 2016;
Mi et al., 2016; Sankaran et al., 2016; Yang et al.,
2016). In most of these approaches some form of
memory is introduced (of the preceding soft align-
ments), but none uses memory networks with mul-
tiple hops. We don’t explictely handle coverage.
Other approaches use a phrase memory (Tang et
al., 2016), or “interactive attention” (Meng et al.,
2016).

5 Conclusion

It has been previously pointed out that the at-
tention mechanism of NMT systems is related to
memory networks. An important aspect of mem-
ory networks is the ability to perform multiple
hops in the memory, and it has been shown in the
past that this is the key technique to achieve good
performance in tasks with nested relationships.

As far as we know, this work is the first time
that an attention mechanism based memory net-
works with multiple hops has been shown to sig-
nificantly improve the BLEU score of an NMT
system. We then extended our approach by per-
forming hops on the source and target sentence.
Finally, we showed that the memory network can
be used to jointly align and generate the target sen-
tence, without the need of an LSTM.



References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. Wit3: Web inventory of transcribed
and translated talks. In EAMT, pages 261–268.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. 2014. Learning phrase representations
using rnn encoder-decoder for statistical machine
translation. In EMNLP.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In EMNLP, pages
1700–1709.

Minh-Thang Luong, Hieu Pham, and Christophe D.
manning. 2015. Effective approaches to attention-
based neural machine translation. In EMNLP, pages
1412–1421.

Fandong Meng, Zhengdong Lu, Hang Li, and Qun Liu.
2016. Interactive attention for neural machine trans-
lation. In https://arxiv.org/abs/1610.
05011.

Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and Abe
Ittycheriah. 2016. Coverage embedding models for
neural machine translation. In https://arxiv.
org/abs/1605.03148.

Baskaran Sankaran, Haitao Mi, Yaser Al-Onaizan,
and Abe Ittycheriah. 2016. Temporal attention
model for neural machine translation. In https:
//arxiv.org/abs/1608.02927.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston,
and Rob Fergus. 2015. End-to-end memory net-
works. In NIPS, pages 2440–2448.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS, pages 3104–3112.

Yaohua Tang, Fandong Meng, Zhengdong Lu, Hang Li,
and Philip L.H. Yu. 2016. Neural machine trans-
lation with external phrase memory. In https:
//arxiv.org/abs/1606.01792.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In ACL, pages 76–85.

Zichao Yang, Zhiting Hu, Yuntian Deng, Chris Dyer,
and Alex Smola. 2016. Neural machine translation
with recurrent attention modeling. In https://
arxiv.org/abs/1607.05108.


